Imperial College

London MSc in Analogue & Digital IC Design

Mastering Digital Design ...
... in Verilog with FPGAs

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

Course webpage: www.ee.ic.ac.uk/pcheung/teaching/MSc_Experiment/
E-mail: p.cheung@imperial.ac.uk

PYKC 9 Oct2017 MSc Lab —~ Mastering Digital Design Lecture 1 Slide 1

Welcome to this MSc Lab Experiment. All my teaching materials for this Lab-based
module are also available on the webpage:

The QR code here provides a shortcut to go to the course webpage.

Aims, Objectives and Assessment

1. To ensure all students on the MSc course reaches a common competence level
in RTL design using FPGAs in a hardware description language;

2. To act as revision exercise for those who are already competent in Verilog and
FPGA.

Format:

+ Lab Experiment in four parts - Each should take 1 week, and
each has very clearly defined Learning Outcomes.

+ Some lectures by me — to teaching you something or to go over
materials in the previous lab session

Assessment:
1. One-to-one interview in the second half of the Autumn Term.

2. Part of the Coursework component of the MSc course (which you MUST pass, but
is not counted towards the grade of the final MSc degree).

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 2

This Lab Experiment is compulsory and its goal is to ensure that ALL students on this
course get to a level of competence in digital design, Verilog and FPGAs as expected
with our MSc graduates.

If you are already experienced with Verilog and/or FPGAs, you will find this
experiment quite easy. However, if you have not done either in your UG degree
programme, this is a great chance for you to catch up. This Laboratory served as a
“levelling” purpose — make sure that all students on the course reach a common
level and standard in digital design.

The learning outcomes for each of the four parts are:

Part 1: Basic competence in using Intel/Altera’s Quartus design systems for
Cyclone-V FPGA; appreciate the superiority of hardware description language over
schematic capture for digital design; use of case statement to specify combinatorial
circuit; use higher level constructs in Verilog to specify complex combinatorial
circuits; develop competence in taking a design from description to hardware.

Part 2: Use Verilog to specify sequential circuits; design of basic building
blocks including: counters, linear-feedback shift-registers to generate pseudo-
random numbers, basic state machines; using enable signals to implement globally
synchronisation.

Part 3: Understand how digital components communicate through
synchronous serial interface; interfacing digital circuits to analogue components
such as ADC and DAC; use of block memory in FPGAs; number system and arithmetic
operations such as adders and multipliers; digital signal generation.

Part 4: Understand how to implement a FIFO using counters as pointer
registers and Block RAM as storage; implement a relatively complex digital circuit
using different building blocks including: counters, finite state machines, registers,
encoder/decoder, address computation unit, memory blocks, digital delay elements,
synchronisers etc.; learn how to debug moderately complex digital circuits.

Old ways of implementing digital circuits

+ Discrete logic — based on gates or small
packages containing small digital building
blocks (at most a 1-bit adder)

+ De Morgan's theorem — theoretically we
only need 2-input NAND or NOR gates to
build anything

+ Tedious, expensive, slow, prone to wiring
errors

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 3

You would have been taught at least how to implement digital circuits using gates
such as the one shown here. You can still buy this chip with FOUR NAND gates in
one package and this is known as discrete logic. We generally do not use these any
more. It is slow, expensive, consumes lots of energy and very hard to use.

Nevertheless, it is good to learn about NAND and NOR gates because, using De
Morgan’s theorem, you could in theory design and implement a Pentium
microprocessor using use two input NAND or NOR gates alone. It is therefore could
be regarded as the building block of all digital circuits. Similarly, you could in theory
build a car using only basic Lego blocks. Unfortunately such a car would not be very
good.

Early integrated circuits based on gate arrays

+ Rows of gates — often
identical in structure

¢ Connected to form
customer specific
circuits

+ Can be full-custom (i.e.
completely fabricated
from scratch for a
given design)

+ Can be semi-custom
(i.e. customisation on
the metal layers only)

+ Once made, design is
fixed

PYKC 9 Oct2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 4

In early days of integrated circuits, designers started using rows of basic gates
(shown as the dark stuff here arranged in rows). These are either completely
customised (full-custom) or it is made with standard rows of gates but leaving the
gates unconnected. For a specific design, the gates are connect through wires in the
wiring channels. Therefore the customisation is only in the wiring metal layers and
not the layers with transistors. This is known as “semi-custom” application-specific
integrated circuits (ASICs).

Modern digital design — full custom IC

¢ Intel Core i7

+ > % billion trans.

+ Very expensive to
design

+ \ery expensive to
manufacture

+ Not viable unless
the market is very
large

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 5

Of course you can also customise everything — each transistor and each wiring
connect in a full-custom manner. Here is the layout of Intel i7 microprocessor (with
4 cores). Designing such a circuit is very expensive, highly risky, and once designed,
it cannot be changed.

Most applications in electronic industry cannot afford to embark on such a design.
This drives the rise of the Field Programmable Gate Array.

Field Programmable Gate Arrays (FPGAs)

+ Combining idea from Programmable Logic Devices and gate arrays

¢ First introduced by Xilinx in 1985
y EE EE EN

+ Two dominant FPGA makers: . .
¢ Xilinx and Altera

¢ Other specialist makers e.g. EE BN EN
Actel and Lattice Logic

+ Arrays of logic blocks (to
implement logic functions)

+ Lots of programmable wiring in
routing channels

+ Very flexible I/O interfacing logic
core to outside world

Routing
Channel

YO Pad

..\..\:.

Logic Block

R1.1 p1- p16

PYKC 9 Oct 2017 MSc Lab — Mastering Digital Design

Lecture 1 Slide 6

So what is an FPGA? You came across the idea of Programmable Logic Device in the
first year, where the user can program what the logic gate does (be it a NAND or
NOR or some form of SUM-of-PRODUCT implementation) or an adder, you as a user,
can “program” the chip to perform that logic function. Now we can add another
layer of user programmability — you can program how these logic gates are
connected together! In that way, we have a general programmable logic chip.
Unlike the microprocessor where the program is just the instruction to fix digital

hardware, here you can program the hardware itself!

The first FPGA was introduced by Xilinx in 1985. It has arrays of logic blocks which
are programmable. It is surrounded by PROGRAMMABLE ROUTING RESOURCES,
which allows the user to define the interconnections between the logic blocks. It
also has lots of very flexible input and output circuits (programmable for TTL, CMOS

and other interface standards).

Nowadays, there are two major players in the FPGA domain: Xilinx and Altera (now
part of Intel). These two domains 90% of the FPGA market with roughly equal

share.

Configurable Logic Block (or Logic Element)

* ¢ ¢ o

]
A >
B >
C >
D >
|

LUT

FF

Out

Rst :

+ Each logic block has pins located for easy access:

(LE)

Based around Look-up Tables (LUTs), most common with 4-inputs
Optional D-flipflop at the output of the LUT
4-input LUT can implement ANY 4-input Boolean equation (truth-table)

Special circuits for cascading logic blocks (e.g. carry-chain of a binary adder)

Logic Element

in2

in3

in4

out

out

PYKC 9 Oct 2017

MSc Lab — Mastering Digital Design

Lecture 1 Slide 7

Let us look inside an FPGA. Consider the logic block shown in blue in the last slide
(Altera calls their logic block a Logic Element (LE)). Typically an LE consists of a 4-
input Look-up Table (LUT) and a D-flipflop. Let us for now NOT to worry about how
the 4-LUT is implemented internally. Just treat this as a 4-input combinatorial circuit
which produces one output signal as shown here. The IMPORTANT characteristic is
that the 4-LUT can be user defined (or programmable) to implement ANY 4-input

Boolean function.

As we will see later, the lookup table is actually implemented with a bunch of

multiplexers.

Programmable Routing

+ Between rows and columns of logic blocks are

.. Potential
wiring channels Logic Connection
+ These are programmable — a logic block pin Block
can be connected to one of many wiring tracks Fin
through a programmable switch
Routing Wire

+ Xilinx FPGAs have dedicated switch block
circuits for routing (more flexible) Logic Block ~ Switch Blok wire Segment

+ Each wire segment can be connected in /
one of many ways: ,/-r\ . .

A Programmable
3 Wire Switch
Segment

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 8

The Logic Elements are surrounded by lots of routing wires and interconnection
switches. Typically a signal wire to the Logic Block or Logic Element can be
connected to any of these wiring channels through a programmable connection
(essentially a digital switch). Xilinx FPGAs also have dedicated switch blocks shown
here. Horizontal and vertical wires can be connected through such as switch block
with programmable switches (don’t worry for now how that’s done).

FPGAs have huge amount of these programmable resources and switches. Typically
a very small percentage of these are being connected (i.e. ON) for a given
application.

The main advantage and “power” of FPGA comes from the programmable
interconnect — more so than the programmable logic.

The Idea of Configuring the FPGA

¢ Programming an FPGA is NOT the same as
programming a microprocessor

¢ We download a BITSTREAM (not a program) to an
FPGA

¢ This is known as CONFIGURATION
¢ All LUTs are configured using the BITSTREAM
so that they contain the correct value to
implement the Boolean logic
+ Shown here is a typical implementation of a 4-
LUT circuit
e ABCD are the FOUR inputs
e There is four level of 2-to-1 multiplexer circuits

e The 16-inputs to the mux tree determine the
Boolean function to be implemented as in a truth:
table

e These 16 values are stored in registers (DFF)
e Configuration = setting registers to 1 or 0

PYKC 9 Oct 2017 MSc Lab — Mastering Digital Design Lecture 1 Slide 9

Programming an FPGA is called “configuration”. In programming a computer or
microprocessor, we send to the computer instruction codes as ‘1’s and ‘0”’s. These are
interpreted (or decoded) by the computer which will follow the instruction to perform tasks.
The microprocessor needs to be fed these program codes continuously for it to function.

In FPGAs, you only need to configure the chip ONCE on power-up. You download to the
chip a BITSTREAM (also bits in “1’s and ‘0’s), which determines the logic functions
performed by the Logic Elements, and the interconnecting switches in order to connect the
different LEs together to make up your circuit. Once the bitstream is received, the FPGA no
longer needs to read the 1’s and 0’s again, very unlike a microprocessor which has to
continually decoding the machine instructions. That’s why we sometimes say that we
configure an FPGA (instead of programming an FPGA, although the two words are used
interchangeably).

What happens when you configure an FPGA? Let us consider the 4-input LUTSs circuit. This
is typically implement using a tree of four layers of 2-input to 1-output multiplexers. The
entire circuit is behaving like a 16-to-1 multiplexer using the 4 inputs ABCD as the control of
the MUX tree. For example, if ABCD = 0000, then the top most input of the MUX is routed
to Y output.

In this way, ABCD forms the input columns of a truth table. For 4-inputs, the truth table has
16 entries. The output Y for each of the truth table entry corresponds to the input of the
MUX. Configuration involves fixing the inputs to the 16-to-1 MUX by storing ‘1’ or ‘0’ in the
registers R. Changing the 16 values stored, you can change to truth-table to anything you
want.

Configuring the routing in an FPGA

¢ At each interconnect site, there is After programming
a transistor switch which is default

OFF (not conducting) 4 4 4

+ Each switch is control by the Before Programming 6_,
output of a 1-bit configuration | /N .
N
/

L

register /
+ Configuring the routing is simply tc B - </\\ .
v

put a ‘1" or ‘0’ in this register to /
control the routing switches

7/
72N
/

/

PN
N

¢ Bitstream is either stored on local
flash memory or download via a

computer
8 configuration

+ Configuration happens on power oo
READ or
up WRITE
Uara_m_j

PYKC 9 Oct 2017 MSc Lab — Mastering Digital Design Lecture 1 Slide 10

To configure the programmable routing, let us look at how the routing circuit works. Take
Xilinx SWITCH BLOCK circuit (green blocks in slide 7). This block controls the connections
between four horizontal channels and four vertical channels. The diamond shaped block is a
potential interconnect site. Inside the switch block circuit, there are 6 transistor switches
which are initially all OFF (or open circuit).

The gate input of EACH switch is controlled by the output of a 1-bit register (e.g. a 1-bit D-
FF). If the register stores a ‘1’, the routing transistor will have its gate driven high. Since the
transistor is an nMOS transistor, it will become conducting. In this way, configuring the
routing resources simply means that the correct ‘1’s and ‘0’s are stored in the registers that
control these routing transistors.

As you would expect, typically an FPGA would have hundreds of thousands of these routing
switches, most of these are OFF. Once programmed, the interconnections are made. The
bold lines in the diagram above (after programming) shows the programmed connections.

Bitsteam information used for configuration purpose are usually stored on a flash memory chip,
which is download to the FPGA during power-up — similar to “booting up a computer”. Once this is
done, the FPGA is progammed to perform a specific user function (e.g. your design in the VERI
experiment).

Alternatively you can send the bitstream to the FPGA via a computer connection to the chip. On the
DE1-SOC board, it does both. Powerup DE1 will configure the Cyclone V FPGA chip to a “waiting”
mode, which makes the DE1 board talk to the computer via the USB port while flashing the lights ON
and OFF. You then send to the board a bitstream of your design via the USB port.

10

Cyclone V’s Adaptive Logic Module (ALM)

We use Altera’s Cyclone V FPGA on this course

+ It uses a more complex FPGA logic fabric known as Adaptive Logic Module (ALM)
¢ The device we use (5CSEMAS5F31C6N) has 32,000 ALMs on one chip

. .
The logic element is more
advanced than the original 4-LUT /\ I
architecture 7 all

The ALM can implement much

1
2
. " 3
larger logic functions, or can be 4 o
. > aptive
broken into a number of smaller 5 LEtT
units 6 >
7 > / " >
8 —A; (| Ful >
Adder
_>
\ 4
PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 11

Let us now look at the FPGA that you will use for this course. The Altera
Cyclone V FPGA has a more advanced programmable logic element than the
simple 4-input LUT that we have considered up to now. The call this a
Adaptive Logic Module or ALM.

An ALM can take up to 8 Boolean input signals and produces four outputs
with or without a register. Additionally, each ALM also can perform the
function of a 2-bit binary full adder.

As a user of the Cyclone V FPGA, you don’t actually need to worry too much
about exactly how the ALM is configured to implement your design. The CAD
software will take care of the mapping between your design and the physical
implementation using the ALMs. It is however useful to know that as the
technology evolves, more and more complicated programmable logic
elements are being developed by the manufacturers in order to improve the
area utilization of the FPGAs.

The Cyclone V on the DE1-SOC board has 32,000 ALMs, which could be

estimated to be equivalent to 85K+ the old style LEs. Putting this in context,
you could put onto this one chip 2,000 32-bit binary adder circuits!

11

Cyclone V Chip-level Structure

6.144-Gbps
Transceivers

ALMs and
Distributed Memory

PLLs —

6.144-Gbps
Transceivers PCS

Hard IP Blocks for
PCle Gen 2 and
PCle Gen 1

External Memory

—— HPS I/O

ARM Cortex-A9
MPCore HPS

-Precision

—

Up to 469 I/O pins
(HPS + FPGA)

Two CorefTransceiver

Interface Controllers

Power Regulators
Required (1.1V, 2.5V)

Digital Signal Processing
‘ (DSP) Hard IP Blocks

]
||
]

C L L e
mim

I-I\II

gz

EE—
-4 M10K Embedded
Memory Blocks
L~

PYKC 9 Oct 2017

MSc Lab — Mastering Digital Design

Lecture 1 Slide 12

The Cyclone V is much more than just an FPGA with a bunch of Logic Elements (or
ALMs). Our chip in the DE1-SOC board has 32,000 ALMs, which is around 85K old
style 4-input LUT LEs. On top of that, it also has over 4Mbit of embedded memory,
87 DSP blocks (to do multiply-accumulate operations needed for signal processing),
and even a dual-core ARM microprocessor!

It has hard-logic to implement PCle interface (to fast peripherals) and external
memory interface to connect to external memory. It is a truly powerful chip onto

which one could implement an entire digital electronic system. Therefore Altera call
this Cyclone V System-on-Chip (SoC).

12

Design Tools — Altera Quartus Il

Requirements

+ Quartus Il — a comprehensive design tools for Altera
FPGAs

+ Special web edition free to download from (need
registration):
o http://dl.altera.com/?edition=lite
e Features include (see introduction to Quartus Il):
» design entry
» compilation from Hardware Description
Languages (HDL)
e synthesis
» simulation
e timing analysis
e power analysis
» project management

environment
design

Behavioral
simulation
Synthesis

Timing
Analysis

R1.3

Bitstream

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 13

For this lab-based module, you will be designing circuits using the free version of the
design suite known as Quartus Prime Lite from Intel/Altera. You can download your
own copy onto your notebook machine, or you can use the versions that are
installed in any PCs located anywhere in the department.

This very powerful design tool contains everything you need to design a complex
digital system ON YOUR OWN COMPUTER! However, the software only runs on
either a MS Windows or a Linux operating system. If you are using a Mac, you
would need to run a Virtual Machine applications (such as Virtual Box) and install
Windows or Linux before installing Quartus Il software.

Beware that the software is very large — you need to have several GB of free disk
space. The minimum required RAM is 4GB, and 8GB is recommended.

If your laptop is suitable, do download this software and play with it at home.

13

DE1-SOC Board

B [= I m
* T | useomet -~ ghan.

ot L JTAG
J 2

su2 ‘4—1‘—" N
= b Cars
I)
e N -
] - 6 all
- . ! ©pn GPO c v |
Pl sunaseu Bl o) - = -— -
o T s SRR yeionef: B
e adid il l..J..].JJuJ Qoo0 L g — 2 SCSEMASFI1CEN US8 Host s
p— rl-'—ou Normai Type-A| = sl
e -
- : FPGA
from P8 sm.cfxwu = 'u'—-
oD — USB M8
[CoaitCod Ganwstor) - R
o FPGA HPS m:-zlvcmm
i [x10 a2 a0 o l" Tu 1-1 0
f 1k I i e e e
YO8) i wirleo 1 158 R
I ERRNRAREN!
LED x%0
8888868 R1.4
7-Segment Duplay 16
PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 14

This slide shows you the functional blocks of the DE1-SoC board. This has
everything you need test basic designs involving switches, 7-segment displays
and even a VGA output.

14

Add-on Board

+ Provides analogue inputs and — 2 B B 38 B8 &

outputs

+ Contains 2 channels ADC, one from
microphone & one from a socket

+ Has 2 channel analogue output with
one driven by a DAC and another by
a digital signal

+ Includes built-in filter and operational
amplifier

+ Will be using this board in Part 3 & 4
of this Lab Experiment

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 15

| also provide a purpose-built ADC/DAC board to support the lab experiment.
This add-on board in only needed in week 3 onwards during the laboratory
sessions. So for now, you can ignore it.

15

Schematic vs HDL

Schematic HDL
v Good for multiple data flow v Flexible & parameterisable
v Give overview picture v Excellent input to optimisation & synthesis
v Relate directly to hardware v Direct mapping to algorithms

v Don'’t need good programming skills v Excelentfor datapats

v Easy to handle electronically (only needing a

v High information density text editor)

v Easy back annotations
v Useful for mixed analogue/digital

% Not good for algorithms x Serial representation

% Not good for datapaths x May not show overall picture

x Poor interface to optimiser x Need good programming skills
% Poor interface to synthesis software x Divorce from physical hardware

x Difficult to reuse
x Difficult to parameterise

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 16

You are very familiar with schematic capture. In the first year, you used SPICE
for simulating analogue circuits and Quartus Il for your digital experiment
where you create schematic circuits with gates.

However modern digital design methods in general DO NOT use schematics.
Instead an engineer would specify the design requirement or the algorithm
to be implemented in some form of computer language specially designed to
describe hardware. These are called “Hardware Description Languages”
(HDLs).

The most important advantages of HDL as a means of specifying your digital
design are: 1) You can make the design take on parameters (such as number
of bits in an adder); 2) it is much easier to use compilation and synthesis
tools with a text file than with schematic; 3) it is very difficult to express an
algorithm in diagram form, but it is very easy with a computer language; 4)
you can use various datapath operators such as +, * etc.; 5) you can easily
edit, store and transmit a text file, and much hardware with a schematic
diagram.

For digital designs, schematic is NOT an option. Always use HDL. In this
lecture, | will demonstrate to you why with an example.

16

Verilog HDL

Similar to C language to describe/specify hardware
Description can be at different levels:

e Behavioural level

¢ Register-Transfer Level (RTL)

e Gate Level

+ Not only a specification language, also with associated simulation
environment

+ Easier to learn and “lighter weight” than its competition: VHDL (3" year
optional course)

+ Very popular with chip designers

+ For this course, we will:
U Learn through examples and practical exercises
U Use two examples: 2-to-1 multiplexer and 7 segment decoder

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 17

| have chosen to use Verilog HDL as the hardware description language for the
course. Verilog is very similar to the C language, which you should already know
from your first year course. However, you must always remember that YOU ARE
USING IT TO DESCRIBE HARDWARE AND NOT A COMPUTER PROGRAMMIE.

You can use Verilog to describe your digital hardware in three different level of
abstraction:

1) Behavioural Level — you only describe how the hardware should behave without
ANY reference to digital hardware.

2) Register-Transfer-Level (RTL) — Here the description assume the existence of
registers and these are clocked by clock signal. Therefore digital data is transferred
from one register to the next on successful clock cycles. Timing (in terms of clock
cycles) is therefore explicitly defined in the Verilog once. This is the level of design
we use on this course.

3) Gate Level — this is the low level description where each gate is described and
how these are connected together is specified.

Verilog is not only a specification language which tells the CAD system what
hardware is suppose to do, it also includes a complete simulation environment. A
Verilog compiler does more than mapping your code to hardware, it also can
simulate (or execute) your design to predict the behaviour of your circuit. It is the
predominant language used for chip design.

17

Structure of a Module

+ Verilog design contains interconnected

modules a sel out
¢ A module has collections of low-level gates, out 0 b

statements and other modules b o outbar 1 a
+ Here is an example of a simple module that

describes a 2-to-1 multiplexer: sel

¢ /I to end-of-line is comment. Can also

£ use /* ... */ for multiline comments
|module mux2tol (out, outbar, + Declare and name module; list its ports;
a, b, sel); terminate with *;’

Function: D e M)+ =

unction: 2-to-1 multiplexer

utput out, outbar; + Specify port as input, output (or inout if
input a, b, sel; bidirectional)

Express modules behaviour; each
tign outbar out; statement executes in parallel; ORDER
DOES NOT MATTER

1]
]
]
|
Q
H
0
§
ct

]

]

N m
' ’

t
o

.

.

endmodule

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 18

This is a Verilog code module that specifies a 2-to-1 multiplexer. It is rather
similar to a C function (except for the module keyword).

It is important to remember the basic structure of a Verilog module. There is
a module name: mux2tol. There is a list of interface ports: 3 inputs a, b and
sel, and 2 outputs out and outbar. Always use meaningful names for both
module name and variable names.

You must specify which port is input and which port is output, similar to the
data type declaration in a C programme.

Finally, the 2-to-1 multiplexing function is specified in the assign statement
with a construct that is found in C. This is a behavioural description of the
multiplexer — no gates are involved.

The last statement specifies the relationship between out and outbar. It
is important to remember that Verilog describes HARDWARE not instruction
code. The two assign statements specify hardware that “execute” or perform
the two hardware functions in parallel. Therefore their order does not
matter.

18

Continuous Assignment

|module mux2tol (out, outbar,

2,

b, sel);

output out, outbar;
input a, b, sel;

assign out =
assign outbar
endmodule
i3 TN
i2 -

o{
i1 1

io

sel 7

-

R Ty

~Qut;

assign

Keyword assign specifies continuous assignment
to describe combinational logic

Right-hand expression continuously evaluated
responding to input change immediately

Left-hand is a net driven with evaluated value

Left side must be a scalar, a net or a concatenation
of nets and vector nets. (nets, vectors etc.
described later)

All continuous assignments execute in parallel
Operators in expressions are low-level:
- Conditional assignment: (cond)? vTrue: vFalse
- Boolean: ~, &, |,
- Arithmetic: +, -, *
Qperators can be nested. For example, here

(s0 2 i1 : 1i0);

PYKC 9 Oct 2017

MSc Lab - Mastering Digital Design Lecture 1 Slide 19

Continuous assignment specifies combinational circuits — output is continuously
reflecting the operations applied to the input, just like hardware.

Remember that unlike a programming language, the two continuous assignment
statements here ARE specifying hardware in PARALLEL, not in series.

Here we also see the conditional assignment statement that is found in C. This maps
perfectly to the function of a 2-to-1 multiplexer in hardware and is widely used in

Verilog.

Furthermore, there are many other Boolean and arithmetic operators defined in
Verilog (as in C). Here is a quick summary of all the Verilog operators (used in an

expression).

U 10
+-%/
%

concatenation & reduction and
arithmetic ~& reduction nand
modulus | reduction or
relational ~ reduction nor
logical negation A reduction xor
logical and ~A or A~ reduction xnor
logical or << left shift
logical equality >> right shift
logical inequality ?: condition

case equality or event or

case inequality

bit-wise negation

bit-wise and

bit-wise inclusive or

bit-wise exclusive or 19
bit-wise equivalence

Description at Gate Level

m
1
H
[\l
w
Q
W
m
w

module mux gate (out, outbar,
a, b, sel);

output out, outbar;
input a, b, sel;

wire outl, out2, selb;

endmodule
"1
out1
sel
out
b outbar
s€ out2

b —

J

Built-in logic gate primitives:

Q and, nand, or, nor, xor, xnor, not, buf
Can use arbitrary number of inputs, e.g.
and gate_name (out, in1, in2, in3, ...)
Tri-state buffers: bufif1 and bufif0
Connect gates with nets using declaration
keyword wire

and a1 (out1, a, sel);
This is called an instantiation of an AND

gate. a1 is the name of THIS particular
AND gate.

PYKC 9 Oct 2017

MSc Lab — Mastering Digital Design

Lecture 1 Slide 20

While the previous Verilog code for the 2-to-1 mux only specify “behaviour”, here is
one that specify a gate implementation of the same circuit. Three types of gates are
used: and, or an not gates. There are internal nets (declared as wire) which take on
any names.

Keywords such as and, or and xor are special — they specify actual logic gates. They
are also special in that the number of inputs to the and-gate can be 2, 3, 4, Any
length!

Note that this module uses TWO AND gates, and they have different names: al and
a2. There are TWO separate instances of the AND gate. For software functions,
“calling” a function simple execute the same piece of programme code. Here the
two lines “and al (outl, ...” and “and a2 (out2 ...” produce two separate piece of
hardware. We say that each line is “instantiating” an AND gate.

Wiring up the gates is through the use of ports and wires, and depends on the
positions of these “nets”. For example, outl is the output net of the AND gate al,
and it is connect to the input of the OR gate o1 by virtual of its location in the gate
port list.

20

Procedural Assignment using “always”

procedures in software

sequential logic

begin

if (sel) out = a;

else

outbar
end
endmodule

out = b;

~outct;

Good for behavioural description of hardware including combinational and

Support richer C-like constructs such as if, for, while, case etc.

outbar, a, b, sel); ¢ Peclarations same as before

*

Keyword always and initial are used to define procedural assignment, similar to

Assignment inside an always block must

be declared as variable data type such as

BB reg (seelaten

sel) *

always block runs once whenever a signal

in the sensitivity list changes value

Statements inside the always block are

executed sequentially. ORDER

MATTERS!

Sandwiched between begin/end

PYKC 9 Oct 2017

MSc Lab — Mastering Digital Design

Lecture 1 Slide 21

So far we have used Verilog in a very hardware specific way. “assign” and using
gate specification are special to Verilog.

Here is something that is more like C—and it is called “procedural assignment”.
Typically we use something called “always” block to specify a “procedure” or
collection of sequential statements which are sandwiched between begin-end

construct.

The always block needs a sensitive list — a list of signals such that if ANY of these
signal changes, the always block will be invoked. You may read this block as:

“always at any changes in nets a, b or sel, do the bits between begin and end”
Actually, if you are defining a combinational circuit module, an even better way to
define the always block is to use:

always

@* ..

// always at any change with any input signals

Inside the begin-end block, you are allowed to use C-like statements. In this case, we
use the if-else statement. All statements inside the begin-end block are executed
sequentially.

21

Verilog “register” is NOT what it appears!

+ Registers normally represents storage elements in digital logic, they need clock
signals to update their output value

+ In Verilog reg are NOT the same as digital registers, it is used only to declare a
variable that holds a value

+ Values of variables (declared as reg) can be changed anytime in a simulation, and
can be used for nets of a combinational circuit

+ In other words, in Verilog, reg is similar to declarations such as int, real etc.

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 22

Note that Verilog keyword reg does not implies that there is a register created in the
hardware. Itis much more like declaring a variable that holds a value. Itisarulein
Verilog that assignment INSIDE an always block MUST be declared reg, and NOT a
net (wire). This is one of the few peculiarities of Verilog that can be confusing to
students.

22

Mixing procedural & continuous assignments

¢ Procedural and continuous assignments can co-exist within a module

+ In procedural assignments, the value of variables declared as reg are changed only
once when the procedural block is invoked by changes in the sensitivity list

+ In continuous assignments, the right-hand expression is constantly evaluated and
the left-side net is updated all the time

module mux 2 to_1l(a, b, out, a
outbar, sel);
input a, b, sel; out
output out, outbar; b o outbar
reg out;
always @ (a or b or sel) sel
begin
if (sel) out = a; procedural
s description
end
continuous
i tbar = ~ t o .
AmSgn OUEOR outs description
endmodule
PYKC 9 Oct 2017 MSc Lab — Mastering Digital Design Lecture 1 Slide 23

This slide shows how the procedural statement is mapped to the basic MUX
circuit. The continuous assignment statement corresponds to the NOT gate.

23

case statement — better alternative to if-else

+ case statement can often replace if-else construct within an always block, and
provides better abstraction

¢ Here is an example using the mux_2_to_1 module:

always @ (a or b or sel) Notation for numbers:
begin <size> ‘ <base> <number>
case (sel) 2610 | 2 bit binary, v=2
] . . — . t
:1L ' 1;2 : out = b; b10 Unsized binary 32-bit, v=2
: out = a; . .
31 Unsized decimal, v=31
endcase "
8'hAf 8-bit hex, v=175
end
\ -16'd47 16-bit negative decimal, v=-47
if (sel) out = a;
else out = b;
PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 24

This is yet another way to specify the MUX circuit. It is still a procedural assignment
with the “always” block. However, we replace the if-else statement with a “case”
statement. The case variable is sel. Since sel is a 1-bit signal (or net), it can only
takeonOor 1.

Note that the various case values can be expressed in different number formats as
shown in the slide. For example, consider 2’b10. The 2 is the number of bits in this

number. ‘b means it is specified in binary format. The value of this number is 10 in
binary.

24

n-bit signals - buses

+ \Verilog is powerful in specifying module mux 2 to 1l(a, b, out,
multi-bit signals and buses. ~ outbar, sel);
+ Here is an example for 8-bit input(7:0] a, b;
input sel;

wide 2-to-1 multiplexer:
output [7:0] out, outbar;

reg[7:0] out;

always @ (a or b or sel)

begin
out if (sel) out = a;
outbar else out = b;

end

assign outbar = ~out;
endmodule

Concatenate signals using the { } operator

assign {b[7:0],b[15:8]} = {a[l5:8],a[7:0]1};
effects a byte swap

PYKC 9 Oct2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 25

This slide demonstrates why language specification of hardware is so much better than
schematic diagrams. By simple declaring the signals as a multi-bit bus (8 bits [7:0]), we
change this module to one that specifies 8 separate 2-to-1 multiplexers.

Another useful way to specify a bus is using the concatenation operator: {.... } as shown
above.

The concatenation operator is particularly useful in converting digital signals from one
word length (i.e. number of bits in a word) to another. For example, to convert an 8-bit

unsigned number a[7:0] to a 13-bit unsigned number b[12:0], you can simple do this:

assign b[12:0] = {5'b0, a[7:0]1};

25

Putting everything together — 7 seg decoder

|o

out[6..0]| 5 /

a

In[3.0] ——p| 75€8

"y | in[3.0) | outis:0] | Digit in(3.0) | outie:0) | Digit |
0000 0

decoder a2 1000000 1000 0000000 8
. 3 0001 1111001 ! 1001 0010000 9
In3 :in2 0010 0100100 e 1010 0001000 A
outé [00 01 11 10 0011 0110000 3 1011 0000011 b
00 1 0 1 0 0100 0011001 Y 1100 1000110 [
o
2 01 1 0 0 0 0101 0010010 5 1101 0100001 d
= 0110 oooco10 b 1110 0000110 £
£ 11 0 1 0 0
0111 1111000 7 1111 ooo1110 F
10 0 0 0 0
out6 = /in3*/in2*/in1 + in3*in2*/in1*/in0 + /in3*in2*in1*in0
out5 = /in3*/in2%in0 + /in3*/in2%in1 + /in3*in1*in0 + in3*in2*/in1*in0
outd = /in3*in0 + /in3*in2*/in1 + in3*/in2*/in1*in0
out3 = /in3*in2*/in1*/in0 + /in3*/in2*/in1*in0 + in2*in1*in0 + /in2*in1*/in0
out2 = /in3*/in2*in1*/in0 + in3*in2*/in0 + in3*in2*in1
outl =in3*in2*/in0 + /in3*in2*/in1*in0 + in3*in1*in0 + in2*in1*/in0
out0 = /in3*/in2*/in1*in0 + /in3*in2*/in1*/in0 + in3*in2*/in1*in0 + in3*/in2*in1*in0
PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 26

Here is a simple example: the design of a 4-bit hex code to 7 segment decoder. You
can express the function of this 7-segment decoder in three forms: 1) as a truth
table (note that the segments are low active); 2) as 7 separate K-maps (shown here
is for out6 segment only); 3) as Boolean equations.

This is probably the last time you see K-maps. In practical digital design, you would

rely heavily on CAD tools. In which case, the logic simplifications are done for you
automatically — you never need to use K-maps to do that manually!

26

Method 1: Schematic Entry Implementation

out6 = /in3*/in2*/inl + In3*In2*/in1*/in0 + /in3*In2*In1*In0
oS = /In3*/In2*In0 + /in3*/In2%in1 + fin3*In1*in0 + In3*In2*/in1 *In0

outd = fin3%in0 + /in3%in2°%/inl + n3*/in2° /a1 *in0

out3 = fin3%n2%/in1*/i00 + fi83*/in2* fie1*in0 + in2%in1 %I + fin2*in1*fied

out2 = fin3*fin2*in1*/n0 + In3*in2*inD + in3*In2*in1

outl = In3%n2*/in0 + /in3*n2*/In1%0 + In3%in1*In0 + in2%n1*/in0

out0 = fin3*/In2*/in1*In0 + /in3%In2*/1n1*/In0 ¢ In3*n2*/In1*IN0 + In3°*/In2*In1 "0

TEDIOUS!!

e ’
Tk B

PYKC 9 Oct 2017

MSc Lab — Mastering Digital Design

Lecture 1 Slide 27

Here is a tedious implementation in the form of schematic of interconnected gates.
Very hard to do and very prone to errors.

27

Method 2: Use primitive gates in Verilog

“hin(a) L L ARNDETTTTT
nm[2].xx : ; L S
ninf1) ye—— T . ‘ ’ ' Equally TEDIOUS!!
- S_— ol I . o
2] e i] 1 f : outf6).
inft] e+ :
0] |y ¢ | EA L1 A
linstl :
Cinfaj o EANGETTTTTE oo _ Direct mapping of gates to
T primitives
Ra nin[1] ; /
X Hno]
x nst2, @Dl (A, nin[3], nin[2], nin[1]l):
and ANDZ—{tE—mroisy—snf2 oI L), 1in[0]):
and AND3 (C, in[3], in[2], nin[l], nin[0]):
or O©CR1 (out[6]l, A, B, C):
PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 28

One could take a group of gates and specify the gates in Verilog gate primitives such
as and, or etc. Still very tedious. Here is the implementation for the out6 output.

28

Method 3: Use continuous assignment in Verilog

in3*in2*/in1*/in0 + /in3*in2*in1*in0 ‘

Much Better?

o6

Direct mapping of Boolean
equation using continuous
assignment..

v

...... ~in[3]&~in[2]&~in[1]
in|3TeTmizs rfET<~1n[0] |
~in[3]&in[2]&in[1l])&in[0];

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design Lecture 1 Slide 29

Instead of specifying each gate separately, here is using continuous assignment
statement, mapping the Boolean equation direction to a single Verilog statement.
This is better.

29

module & endmodule

sandwich the content of Hex to 7s eg.v
this hardware module -
// Modufe name: hex_to 7seg &1 good header helps
// ion: c-f_fn'.’f:!, 4—‘:;;1: Z".!:}.('.‘:al'.;: to drive 7 segment display documenting your code
L . tecos choumg 7% | specify interface to this
1/ on: 1.0 module as viewed from
/1 22 Cct 2011 outside specify a 7-bit output bus,
L out[6] ... out[0]

module hex to_7seg (out,

output [6:0] out: // low-active output to drive 7 segment display
input [3:0] in; // 4-bit binary input of a hexademical number
assign out[6] = ~in(3)&~in(2]&~in[1] | in([3]}&in[2)&~in[1]&~in[0] |

~in[3)&in[2)&in[1l)&in[0]);
assign out(S] = ~in(3)&~in(2]1&in(0] | ~in(3l&~in(2]&in(l] |
~in(3]&in[1)&in[0] | in(3]&in[2]&~in[1]&in([0];

assign
assign out(3] = ~in(3] inf(l]&~in[0] | ~in(3]&~in[2]&~in[l]&in(0]
in[2]&in[1]&in([0] in[1]&~in[0];

declaration of
input and output
ports

31&in[0) | ~in[3)&in[2)&~in[l1l] | in[3)&~in[2)&~in[1)&in([0];

assign out[2] = ~in[3)&~in(2]&in[l]&~in[0]
in[(3]&in[2l&infl];
assign out[l] = in[3]&in[2]&~in[0] | ~in[3]&in[2])&~in[1)&in[0]

2 [21&~in[0] | | assign used to specify
combinational circuit

in[3)&in[1]&in([0] | in[{2]&in[l]l&~in(0];
assign out[0] = ~in(3)&~in[2]&~in[1]1&in[(0] | ~in([(3]&in[2]&~in[1]&~in[0]
in[3)&in[2]&~in[1])&in[0] | in[3]&~in[2]&in[1]&in[0];
endmodule

PYKC 9 Oct 2017 MSc Lab - Mastering Digital Design

Lecture 1 Slide 30

Here is the complete specification of the hex_to_7seg module using continuous
assignment. It shows how one should write Verilog code with good comments and

clear documentation of input and output ports.

30

Method 4: Power of behavoural abstraction

module hex_to_7seg

output [6:0]
input [3:0]

reg [6:0]

always @ (in)
case (in)

4'ho0:
4'hl:
4'h2:
4'h3:
4'h4:
4'h5:
4'hé:
4'h7:
4'h8:
4'h9:
4'ha:
4'hb:
4'hc:
4'hd:
4'he:
4'nhf:
endcase
endmodule

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out

(out,in);

out; // low-active output to
in; // 4-bit binary input o
out; // make out a variable

BEAUTIFUL !

7'b1000000;
7'b1111001;
7'b0100100;
7'b0110000;
7'b0011001;
7'b0010010;
7'b0000010;
7'b1111000;
7'b0000000;
7'b0011000;
7'b0001000;
7'b0000011;
7'b1000110;
7'b0100001;
7'b0000110;
7'b0001110;

\

Direct mapping of truth
table to case statement
Close to specification,
not implementation

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

|in(3.0] | _out(6:0] | Digit |
0000 1000000

1111001
0100100
0110000
0011001
0010010
0000010
1111000
0000000
0010000
0001000
0000011
1000110
0100001
0000110
0001110

mMMmMAoAON”NoCIYTuDuoomKnIwnu ~-0O

PYKC 9 Oct 2017

MSc Lab — Mastering Digital Design

Lecture 1 Slide 31

Finally the 4th method is the best. We use the case construct to specify the
behaviour of the decoder. Here one directly maps the truth table to the case
statement — easy and elegant.

Instead of using:

always @ (in), you could also use always @*

31

From Verilog code to FPGA hardware

Verilog code
.... If (sel) out = a;
else out = b;

l _______

Elaboration: checking
syntax, expanding and
creating instances etc.

Expanded Verilog

code
| Compilation:
l ----- -=behaviour description
to gate netlist or
Gate netlist internal format related

AND G1(n1,n2,n3)
NOT G2(n4,n1)

to hardware

Synthesis: optimise

logic, tradeoff amount
of hardware with

Optimised netlist
NAND K1(n4,n2,n3)

speed etc.

—

FPGA specific
hardware (LE,
memory etc)

l _______

Physical location
of hardware and
interco_nnect

&______

Programming
(Configuration)
bitstream

~
-
-
-~

Technology mapping:
map hardware to LEs,
flipflops, memory blocks
multipliers etc.

Place & Route: Fix the
locations and wiring of all
the hardware blocks for a
specific FPGAs

Assembler: Produce the
binary bit pattern need to
program (configure) the
FPGA

'

PYKC 9 Oct 2017

MSc Lab — Mastering Digital Design

Lecture 1 Slide 32

How is a Verilog description of a hardware module turned into FPGA configuration?
This flow diagram shows the various steps taken inside the Quartus Il CAD system.

For the Lab Experiment, you will be working in pairs. In other to ensure that you get
to know each other, | have randomly paired you together with someone else as Lab
Partner for this module.

Group Name
Group Name 6 Mr P. Tripathi
1 Mr A. Dworniczek 6 Mr L. Bu
1 Mr J. Cheng 7 Mr M. Simpson
2 Miss R. Ng 7 Miss J. Chen
2 Miss S. Dai 8 Mr J. Xie
3 Ms V. Rasalingam 8 Miss Z. Jiang
3 MrS. Yu 9 Miss C. Alvarado
4 Mr X. Zhang 9 Miss L. Yuan
4 Mr J. Zhang 10 Mr Y. Weng
5 Mr S. Pournias 10 Mr Y. Zhu
5 Miss J. Huang 11 [MrJ. Shen_
11 Mr J. Huang

32

